Looking at the table called Type III Tests of Fixed Effects, we can see that the interaction of female and sum_honors is not statistically significant. Looking at the table called Estimates of Fixed Effects, we see that two coefficients in the interaction term are statistically significant; again, this would not be interpreted because the overall interaction term (the 8 df test) is not statistically significant. Comparing the results for the variable female in the table of Type III Tests of Fixed Effects and the Estimates of Fixed Effects, we see that in the former table, the p-value for female is 0.001, while in the latter table the p-value is 0.370. Why are these p-values so different? The difference is caused by the type of coding scheme used for the categorical variables. In the table of Type III Tests of Fixed Effects, effect coding is used for the categorical variable. However, in the table of Estimates of Fixed Effects, dummy coding is used. This difference matters only when there is an interaction term in the model and one or more of the variables in the interaction is categorical. The p-value of the interaction term is not affected, but the p-values of the lower-order terms may be. Oftentimes, the lower-order effects are not interpreted (although they are always reported), so the difference is of minimal consequence. It is not the case that one p-value is correct and the other is not; rather, they give different information. When reporting the results, it is important to be clear which is being reported. The results in the table Type III Tests of Fixed Effects are main effects, while the results in the table estimates of Fixed Effects are simple effects. Main effects are deviations from the grand mean, while simple effects are the effect at a specific value. For these results, we would say that the effect of being male compared to female is 2.678571 at the reference level of prog and the reference level of the interaction term. This test may or may not be of interest to the researcher. While the coefficients and their p-values are always reported, the simple effect may or may not be interpreted., In the Linear Mixed Models dialog box, click Fixed or Random. Select Build terms. Select one or more factors or covariates or a combination of factors and covariates. Select a method for building the terms and click Add. Repeat the process until you have all of the terms that you want in the model., mixed attain with vrq /fixed vrq /print = solution /random intercept | subject(pid) /random intercept | subject(sid). For more information on the SPSS mixed command Please see the SPSS Command Syntax Reference for the most up-to-date information about the SPSS mixed command..