A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item., 5. Context-Aware Recommender Systems 基于上下文的推荐模型,现在不论是工业界还是学术界都非常火的一个topic; 6. Toward the next generation of recommender systems 对下一代推荐系统的一个综述; 7., 推荐系统本身太难了,所以大部分科研(论文)都对问题进行了简化。如果想做有意义的推荐问题,需要静下心来重新审视推荐问题的定义,场景,及评测方式,正视其挑战。可以读一下这篇文章(没有公式,没有算法):Take a Fresh Look at Recommender Systems from an Evaluation Standpoint 总体上,我还是认为 , Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems. Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin. KDD 2019. paper Environment reconstruction with hidden confounders for reinforcement learning based recommendation. Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, Jieping Ye., 2. LLM in Rec 从应用视角出发,将LLM应用拆解到传统推荐系统的各个模块。参考自上交和华为合作的工作: How Can Recommender Systems Benefit from Large Language Models: A Survey。 一般推荐系统都包括以下几个关键流程: 数据采集 :推荐系统展示结果给用户后,通过在线系统收集用户反馈数据,得到原始数据(raw , (IUI2019)Personalized Explanations for Hybrid Recommender Systems (RecSys2019)Explaining and Exploring Job Recommendations: a User-driven Approach for Interacting with Knowledge-based Job Recommender Systems.